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Conceptual Foundations

2.1 Introduction

This chapter presents the conceptual foundations of plasma turbulence the-

ory from the perspective of physical kinetics of quasi particles. It is divided

into two sections:

A) Dressed test particle model of fluctuations in a plasma near equilibrium

B) K41 beyond dimensional analysis - revisiting the theory of hydrodynamic

turbulence.

The reason for this admittedly schizophrenic beginning is the rather un-

usual and atypical niche that plasma turbulence occupies in the pantheon of

turbulent and chaotic systems. In many ways, most (though not all) cases

of plasma turbulence may be thought of as weak turbulence, spatiotem-

poral chaos, or wave turbulence, as opposed to fully developed turbulence

in neutral fluids. Dynamic range is large, but nonlinearity is usually not

overwhelmingly strong. Frequently, several aspects of the linear dynamics
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persist in the turbulent state, though wave breaking is possible, too. While

a scale-to-scale transfer is significant, emission and absorption locally, at

a particular scale, are not negligible. Scale invariance is usually only ap-

proximate, even in the absence of dissipation. Indeed, it is fair to say that

plasma turbulence lacks the elements of simplicity, clarity and universality

which have attracted many researchers to the study of high Reynolds number

fluid turbulence. In contrast to the famous example, plasma turbulence is a

problem in the dynamics of a multi-scale and complex system. It challenges

the researchers to isolate, define and solve interesting and relevant thematic

or idealized problems which illuminate the more complex and intractable

whole. To this end, then, it is useful to begin by discussing two rather dif-

ferent ’limiting case paradigms’, which is some sense ’bound’ the position of

most plasma turbulence problems in the intellectual realm. These limiting

cases are:

- The test particle model (TPM) of a near-equilibrium plasma, for which

the relevant quasi-particle is a dressed test particle,

- The Kolmogorov (K41) model of a high Reynolds number fluid, very far

from equilibrium, for which the relevant quasi-particle is the fluid eddy.

The TPM illustrates important plasma concepts such as local emission and

absorption, screening response and the interaction of waves and sources.

The K41 model illustrates important turbulence theory concepts such as

scale similarity, cascades, strong energy transfer between scales and tur-

bulent dispersion. We also briefly discuss turbulence in two-dimensions -

very relevant to strongly magnetized plasmas - and turbulence in pipe flows.

The example of turbulent pipe flow, usually neglected by physicists in def-

erence to homogeneous turbulence in a periodic box, is especially relevant
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to plasma confinement, as it constitutes the prototypical example of eddy

viscosity and mixing length theory, and of profile formation by turbulent

transport. The prominent place accorded in engineering texts to this decep-

tively simple example is no accident - engineering, after all, need answers to

real world problems. More fundamentally, just as the Kolmogorov theory is

a basic example of self-similarity in scale, the Prandtl mixing length theory

nicely illustrates self-similarity in space. The choice of these particular two

paradigmatic examples is motivated by the huge disparity in the roles of

spectral transfer and energy flux in their respective dynamics. In the TPM,

spectral transport is ignorable, so the excitation at each scale k is deter-

mined by the local balance of excitation and damping at that scale. In the

inertial range of turbulence, local excitation and damping are negligible, and

all scales are driven by spectral energy flux - i.e., the cascade - set by the

dissipation rate. (See Fig.2.1 for illustration.) These two extremes corre-

spond, respectively, to a state with no flux and a flux-driven state, in some

sense ’bracket’ most realizations of (laboratory) plasma turbulence, where

excitation, damping and transfer are all roughly comparable. For this rea-

son, they stand out as conceptual foundations, and so we begin out study

of plasma turbulence with them.

2.2 Dressed Test Particle Model of Fluctuations in a Plasma

near Equilibrium

2.2.1 Basic Ideas

Virtually all theories of plasma kinetics and plasma turbulence are con-

cerned, in varying degrees, with calculating the fluctuation spectrum and

relaxation rate for plasmas under diverse circumstances. The simplest, most
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(a) (b)

Fig. 2.1. (a)Local in k emission and absorption near equilicrium. (b)Spectral trans-

port from emission at k1, to absorption at k2 via nonlinear coupling in a non-

equilibrium plasma.

successful and best known theory of plasma kinetics is the dressed test parti-

cle model of fluctuations and relaxation in a plasma near equilibrium. This

model, as presented here, is a synthesis of the pioneering contributions and

insights of Rosenbluth, Rostoker, Balescu, Lenard, Klimontovich, Dupree,

and others. The unique and attractive feature of the test particle model is

that it offers us a physically motivated and appealing picture of dynamics

near equilibrium which is entirely consistent with Kubo’s linear response

theory and the fluctuation-dissipation theorem, but does not rely upon the

abstract symmetry arguments and operator properties which are employed

in the more formal presentations of generalized fluctuation theory, as dis-

cussed in texts such as Landau and Lifshitz’ “Statisical Physics”. Thus, the

test particle model is consistent with formal fluctuation theory, but affords

the user far greater physical insight. Though its applicability is limited to

the rather simple and seemingly dull case of a stable plasma ‘near’ thermal

equilibrium, the test particle model nevertheless constitutes a vital piece of

the conceptual foundation upon which all the more exotic kinetic theories
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are built. For this reason we accord it a prominent place it in our study,

and begin our journey by discussing it in some depth.

Two questions of definition appear immediately of the outset. These are:

a) What is a plasma?

b) What does ‘near-equilibrium’ mean?

For our purposes, a plasma is a quasi-neutral gas of charged particles with

thermal energy far in excess of electrostatic energy (i.e. kBT # q2/r̄), and

with many particles within a Debye sphere (i.e. 1/nλ3
D $ 1), where q is

a charge, r̄ is a mean distance between particles, r̄ ∼ n−1/3, n is a mean

density, T is a temperature, and kB is the Boltzmann constant. The first

property distinguishes a gaseous plasma from a liquid or cristal, while the

second allows its description by a Boltzmann equation. Specifically, the

condition 1/nλ3
D $ 1 means that discrete particle effects are, in some sense,

‘small’ and so allows truncation of the BBGKY hierarchy at the level of

a Boltzmann equation. This is equivalent to stating that if the two body

correlation f(1, 2) is written in a cluster expansion as f(1)f(2) + g(1, 2),

then g(1, 2) is of O(1/nλ3
D) with respect to f(1)f(2), and that higher orders

correlations are negligible. Figure 2.2 illustrates a test particle surrounded

by many particle in a Debye sphere. The screening on the particle ‘A’ is

induced by other particles. When the particle ‘B’ is chosen as a test particle,

others (including ‘A’) produce screening on ‘B’. Each particle acts the role

of test particle and the role of screening for other test particle.

The definition of ‘near equilibrium’ is more subtle. A near equilibrium

plasma is one characterized by:

1) a balance of emission and absorption by particles at a rate related to the

temperature, T
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Fig. 2.2. A large number of particles exist within a Debye sphere of particle ‘A’

(shown by red) in (a). Other particles provide a screening on the particle ‘A’. When

the particle ‘B’ is chosen as a test particle, others (including ‘A’) produce screening

on ‘B’ (b). Each particle acts the role of test particle and the role of screening for

other test particle.

2) the viability of linear response theory and the use of linearized particle

trajectories.

Condition 1) necessarily implies the absence of linear instability of collective

modes, but does not preclude collectively enhanced relaxation to states of

higher entropy. Thus, a near-equilibrium state need not to be one of max-

imum entropy. Condition 2) does preclude zero frequency convective cells

driven by thermal fluctuations via mode-mode coupling, such as those which

occur in the case of transport in 2D hydrodynamics. Such low frequency

cells are usually associated with long time tails and require a renormalized

theory of the non-linear response for their description as is discussed in later

chapters.

The essential element of the test particle model is the compelling physical
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Fig. 2.3. Schematic drawing of the emission of the wave by one particle and the

absorption of the wave.

picture it affords us of the balance of emission and absorption which are

intrinsic to thermal equilibrium. In the test particle model (TPM), emis-

sion occurs as a discrete particle (i.e. electron or ion) moves through the

plasma, Cerenkov emitting electrostatic waves in the process. This emission

process creates fluctuations in the plasma and converts particle kinetic en-

ergy (i.e. thermal energy) to collective mode energy. Wave radiation also

induces a drag or dynamical friction on the emitter, just as the emission of

waves in the wake of a boat induces a wave drag force on the boat. Proxim-

ity to equilibrium implies that emission is, in turn, balanced by absorption.

Absorption occurs via Landau damping of the emitted plasma waves, and

constitutes a wave energy dissipation process which heats the resonant par-

ticles in the plasma. Note that this absorption process ultimately returns

the energy which was radiated by the particles to the thermal bath. The

physics of wave emission and absorption which defines the thermal equilib-

rium balance intrinsic to the TPM is shown in Fig.2.3.

A distinctive feature of the TPM is that in it, each plasma particle has a
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‘dual identity’, both as an ‘emitter’ and an ‘absorber’. As an emitter, each

particle radiates plasma waves, which is moving along some specified, linear,

unperturbed orbit. Note that each emitter is identifiable (i.e. as a discrete

particle) while moving through the Vlasov fluid, which is composed of other

particles. As an absorber, each particle helps to define an element of the

Vlasov fluid responding to, and (Landau) damping the emission from, other

discrete particles. In this role, particle discreteness is smoothed over. Thus,

the basic picture of an equilibrium plasma is one of a soup or gas of dressed

test particles. In this picture, each particle:

i.) stimulates a collective response from the other particles by its discrete-

ness

ii.) responds to on ‘dresses’ other discrete particles by forming part of the

background Vlasov fluid.

Thus, if one views the plasmas as a pea soup, then the TPM is built on the

idea that ‘each pea in the soup acts like soup for all the other peas’. The

dressed test particle is the fundamental quasi-particle in the description of

near-equilibrium plasmas. Examples for dressing by surrounding media are

illustrated in Fig.2.4. In a case of a sphere in fluid, the surrounding fluid

moves with it, so that the effective mass of the sphere (defined by the ratio

between the external force to the acceleration) increases by an amount of

(2π/3) ρa3, where a is a radius of the sphere and ρ is a mass density of the

surrounding fluid. The supersonic object radiates the wake of waves (b),

thus its motion deviates from one in vacuum.

At this point, it is instructive to compare the test particle model of thermal

equilibrium to the well-known elementary model of Brownian fluctuations
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(a)
(b)

Fig. 2.4. Dressing of moving objects. Examples like a sphere in a fluid (a) and a

supersonic object (b) are illustrated. In a case of a sphere, the surrounding fluid

moves with it, so that the effective mass of the sphere (measured by the ratio

between the acceleration to the external force) increases. The supersonic object

radiates the wake of sound wave.

of a particle in a thermally fluctuating fluid. This comparison is given in

Table 2.1, below.

Predictably, while there are many similarities between Brownian particle

and thermal plasma fluctuations, a key difference is that in the case of

Brownian motion, the roles of emission and absorption are clearly distinct

and played, respectively, by random forces driven by thermal fluctuations

in the fluid and by Stokes drag of the fluid on the finite size particle. In

contrast, for the plasma the roles of both the emitter and absorber are played

by the plasma particles themselves in the differing guises of discreteness and

as chunks of the Vlasov fluid. In the cases of both the Brownian particle

and the plasma, the well-known fluctuation-dissipation theorem of statistical

dynamics near equilibrium applies, and relates the fluctuation spectrum to



10 Conceptual Foundations

Table 2.1. Comparison of Brownian particle motion and plasma

fluctuations.

Brownian Motion Equilibrium Plasma

Excitation vω → velocity mode
Ek,ω →

Langmuir wave mode

Fluctuation spectrum
〈
ṽ2

〉
ω

〈
E2

〉
k,ω

Emission Noise

〈
ã2

〉
ω
→ 4πqδ(x− x(t))→

random acceleration by particle discreteness

thermal fluctuations source

Absorption Stokes drag on particle
Im ε→Landau damping of

collective modes

Governing Equations
dṽ

dt
+ βṽ = ã ∇·D = 4πqδ(x−x(t))

the temperature and the dissipation via the collective mode dissipation, i.e.

Im ε(k, ω), the imaginary part of the collective response function.

2.2.2 Fluctuation spectrum

Having discussed the essential physics of the TPM and having identified the

dressed test particle as a the quasi-particle of interest for the dynamics of

near equilibrium plasma, we now proceed to calculate the plasma fluctua-

tion spectrum near thermal equilibrium. We also show that this spectrum

is that required to satisfy the fluctuation-dissipation theorem (F-DT). Sub-

sequently, we use the spectrum to calculate plasma relaxation.

2.2.2.1 Coherent response and particle discreteness noise

As discussed above, the central tenets of the TPM are that each particle is

both a discrete emitter as well as a participant in the screening or dressing

cloud of other particles and that the fluctuations are weak, so that linear
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Fig. 2.5. Schematic drawing of the distribution of plasma particles. The distribu-

tion function, f (x, v), is divided into the mean 〈f〉, the coherent response f c, and

the fluctuation part owing to the particle discreteness f̃ .

response theory applies. Thus, the total phase space fluctuation δf is written

as;

δf = f c + f̃ , (2.1)

where f c is the coherent Vlasov response to an electric field fluctuation, i.e.

f c
k,ω = Rk,ωEk,ω,

where Rk,ω is a linear response function and f̃ is the particle discreteness

noise source, i.e.

f̃(x, v, t) =
1
n

N∑

i=1

δ(x− xi(t))δ(v − vi(t))− 〈f〉 − f c (2.2)

(See, Fig.2.5). For simplicity, we consider high frequency fluctuations in an

electron-proton plasma, and assume the protons are simply a static back-

ground. Consistent with linear response theory, we use unperturbed orbits
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to approximate xi(t), vi(t) as:

vi(t) = vi(0) (2.3a)

xi(t) = xi(0) + vit. (2.3b)

Since kBT # q2/r̄, the fundamental ensemble here is one of uncorrelated,

discrete test particles. Thus, we can define the ensemble average of a quan-

tity A to be

〈A〉 = n

∫
dxi

∫
dvi f0(vi, xi) A (2.4)

where xi and vi are the phase space coordinates of the particles and f0 is

same near equilibrium distribution, such as a local Maxwellian. For a Vlasov

plasma, which obeys

∂f

∂t
+ v

∂f

∂x
+

q

m
E

∂f

∂v
= 0 (2.5a)

the linear response function Rk,ω is:

Rk,ω = −i
q

m

∂ 〈f〉 /∂v

ω − kv
. (2.5b)

Self-consistency of the fields and the particle distribution is enforced by

Poisson’s equation

∇2φ = −4π
∑

s

nsqs

∫
dv δfs (2.6a)

so that the potential fluctuation may be written as

φk,ω = −4πn0q

k2

∫
dv

f̃k,ω

ε(k, ω)
, (2.6b)

where the plasma collective response or dielectric function ε(k,ω) is given

by:

ε(k,ω) = 1 +
ω2

p

k

∫
dv

∂ 〈f〉 /∂v

ω − kv
. (2.6c)

Note that Eqs.(2.6) relates the fluctuation level to the discreteness noise

emission and to ε(k,ω), the linear collective response function.
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2.2.2.2 Fluctuations driven by particle discreteness noise

A heuristic explanation is given here that the ‘discreteness’ of particles in-

duces fluctuations. Consider a case that charged particles (charge q) are

moving as is shown in Fig.2.6(a). Distance between particles is given by

d, and particles are moving at the velocity u. (The train of particles in

Fig.2.6(a) is a part of distribution of particles. Of course, the net field is

calculated by accumulating contributions from all particles.) Charged parti-

cles generate the electric field. The time-varying electric field (measured at

the position A) is shown in Fig.2.6(b). When we make one particle smaller,

but keeping the average density constant, the oscillating field at A becomes

smaller. For instance, if the charge of one particle becomes half q/2 while

the distance between particles becomes half, we see that the amplitude of

varying electric field becomes smaller while the frequency becomes higher.

This situation is shown in Fig.2.6(b) by a dashed line. In the limit of conti-

nuity, i.e.,

Charge per particle → 0

Distance between particle → 0,

while the average density is kept constant, the amplitude of fluctuating field

goes to zero. This example illustrates why ‘discreteness’ induces fluctua-

tions.

Before proceeding with calculating the spectrum, we briefly discuss an

important assumption we have made concerning collective resonances. For

a discrete test particle moving on unperturbed orbits,

f̃ ∼ qδ(x− x0i(t))δ(v − vi)
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Fig. 2.6. Schematic illustration that the discreetness of particles is the origin of

radiations. A train of charged particles (charge q, distance d) are moving near by

the observation point A (a). The vertical component of the electric field observed

at point A (b). When each particle is divided into two particles, (i.e., charge per

particle is q/2 and distance between particles is d/2), the amplitude of observed

field becomes smaller.

so
∫

dv f̃k ∼ qe−ikvt

and

ε(k, t)φk(t) =
4π

k2
qe−ikvt.

Here, the dielectric is written as an operator ε, to emphasize the fact that

the response is non-local in time, on account of memory in the dynamics.

Then strictly speaking, we have

φk(t) = ε−1 ·
[
4πq

k2
e−ikvt

]
+ φk,ωk

e−iωkt. (2.7)

In Eq.(2.7), the first term in the RHS is the inhomogeneous solution driven
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by discreteness noise, while the second term is the homogeneous solution (i.e.

solution of εφ = 0), which corresponds to an eigenmode of the system (i.e.

a fluctuation at k, ω which satisfies ε(k, ω) ) 0, so ω = ωk). However, the

condition that the plasma be ‘near equilibrium’ requires that all collective

modes be damped (i.e. Imωk < 0), so the homogeneous solutions decay in

time. Thus, in a near equilibrium plasma,

φk(t) −−−→
t→∞

ε−1 ·
[
4πq

k2
e−ikvt

]
,

so only the inhomogeneous solution survives. Two important caveats are

necessary here. First, for weakly damped modes with Imωk ! 0, one may

need to wait quite a long time indeed to actually arrive at asymptopia,

so the homogeneous solutions may be important, in practice. Second, for

weakly damped (‘soft’) modes, the inhomogeneous solution φ̂ ∼ |Im ε|−1

can become large and produce significant orbit scattering and deflection.

The relaxation times of such ‘soft modes’, thus, increase significantly. This

regime of approach to marginality from below is analogous to the approach

to criticality in a phase transition, where relaxation times and correlation

lengths diverge, and fluctuation levels increase. As in the case of critical

phenomena, renormalization is required for an accurate theoretical treat-

ment of this regime. The moral of the story related in this small digression

is that the TPM’s validity actually fails prior to the onset of linear insta-

bility, rather than at the instability threshold, as is frequently stated. The

behavior of fluctuation levels near the stability boundary is schematically

illustrated in Fig.2.7. Even if the modes are stable, enhanced excitation of

eigenmodes is possible when the controlling parameter is sufficiently close to

the boundary of stability, approaching from below. Linear response theory

could be violated even if the eigenmodes are stable.
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Fig. 2.7. Fluctuation level near the stability boundary. Even if the modes are sta-

ble, enhanced excitation of eigenmodes is possible when the controlling parameter

approaches the boundary of stability. Linear theory could be violated even if the

eigenmodes are stable. Nonlinear noise is no longer negligible.

2.2.2.3 Potential fluctuations

Proceeding with the calculation of the spectrum, we first define the spec-

tral density of the potential fluctuation as the transform of the potential

fluctuation correlation function, i.e.

〈
φ2

〉
k,ω

=
∫ ∞

−∞
dx

∫ ∞

0
dt ei(ωt−k·x) 〈φ(0, 0)φ(x, t)〉 (2.8a)

and

〈φ(0, 0)φ(x, t)〉 =
∫ ∞

−∞

dk

(2π)3

∫ ∞

−∞

dω

2π
ei(k·x−ωt)

〈
φ2

〉
k,ω

. (2.8b)

Note that the transformation is a Fourier transform in space but a Laplace

transform in time. The “one-sided” Laplace transform is intrinsic to fluctu-

ation and TPM theory, as both are built upon the idea of causality, along

with assumptions of stationarity and linear response. As linear response

theory applies here, the fluctuation modes are uncorrelated, so

〈φkφk′〉 = (2π)4
〈
φ2

〉
k,ω

δ(k + k′)δ(ω + ω′). (2.8c)
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Therefore, from Eqs.(2.8a)-(2.8c) and Eq.(2.6b), we can immediately pass

to the expression for the potential fluctuation spectrum,

〈
φ2

〉
k,ω

=
(

4πn0

k2
q

)2 ∫
dv1

∫
dv2

〈
f̃(1)f̃(2)

〉

k,ω

|ε(k,ω)|2 . (2.9)

Note that the fluctuation spectrum is determined entirely by the discreteness

correlation function
〈
f̃(1)f̃(2)

〉
and the dielectric function ε(k,ω). More-

over, we know ab-initio that since the plasma is in equilibrium at tem-

perature T , the fluctuation-dissipation theorem applies, so that the TPM

spectrum calculation must recover the general F-DT result, which is;
〈
D2

〉
k,ω

4π
=

2T

ω
Im ε(k, ω). (2.10)

Here Dk,ω = ε(k, ω)Ek,ω is the electric displacement vector. Note that the

F-DT quite severely constrains the form of the particle discreteness noise.

2.2.2.4 Correlation of particles and fluctuation spectrum

To calculate
〈
f̃(1)f̃(2)

〉

k,ω
, we must first determine

〈
f̃(1)f̃(2)

〉
. Since f̃ is

the distribution of discrete uncorrelated test particles, we have;

f̃(x, v, t) =
1
n

N∑

i=1

δ(x− xi(t))δ(v − vi(t)). (2.11)

From Eqs. (2.3), (2.4), and (2.11), we obtain

〈
f̃(1)f̃(2)

〉
=

∫
dxi

∫
dvi

〈f〉
n

N∑

i,j=1

[δ(x1 − xi(t))

× δ(x2 − xj(t))δ(v1 − vi(t))δ(v2 − vj(t))]. (2.12)

Since the product of δ’s is non-zero only if the arguments are interchangeable,

we obtain immediately the discreteness correlation function
〈
f̃(1)f̃(2)

〉
=
〈f〉
n

δ(x1 − x2)δ(v1 − v2). (2.13)
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Equation.(2.13) gives the discreteness correlation function in phase space.

Since the physical model is one of an ensemble of discrete, uncorrelated test

particles, it is no surprise that
〈
f̃(1)f̃(2)

〉
is singular, and vanishes unless

the two points in phase space are coincident. Calculation of the fluctuation

spectrum requires the velocity integrated discreteness correlation function

C(k,ω) which, using spatial homogeneity, is given by:

C(k,ω) =
∫

dv1

∫
dv2

〈
f̃(1)f̃(2)

〉

k,ω

=
∫

dv1

∫
dv2

[ ∫ ∞

0
dτ eiωτ

∫
dx e−ik·x

〈
f̃(0)f̃(x, τ)

〉

+
∫ 0

−∞
dτ e−iωτ

∫
dx e−ik·x

〈
f̃(x,−τ)f̃(0)

〉]
. (2.14)

Note that the time history which determines the frequency dependence of

C(k,ω) is extracted by propagating particle (2) forward in time and particle

(1) backward in time, resulting in the two Laplace transforms in the expres-

sion for C(k,ω). The expression for C(k,ω) can be further simplified by

replacing v1, v2 with (v1 ± v2)/2, performing the trivial v-integration, and

using unperturbed orbits to obtain

C(k,ω) = 2
∫

dv

∫ ∞

0
dτ eiωτ

∫
dx e−ik·x 〈f(v)〉

n
δ(x− vτ)

= 2
∫

dv
〈f(v)〉

n

∫ ∞

0
dτ ei(ω−k·v)τ

=
∫

dv 2π
〈f(v)〉

n
δ(ω − k · v). (2.15)

Equation (2.15) gives the well known result for the density fluctuation corre-

lation function in k,ω of an ensemble of discrete, uncorrelated test particles.

C(k,ω) is also the particle discreteness noise spectrum. Note that C(k,ω)

is composed of the unperturbed orbit propagator δ(ω − k · v), a weighting

function 〈f〉 giving the distribution of test particle velocities, and the factor

of 1/n, which is a generic measure of discreteness effects. Substitution of
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C(k,ω) into Eq.(2.9) then finally yields the explicit general result for the

TPM potential fluctuation spectrum:

〈
φ2

〉
k,ω

=
(

4πn0

k2
q

)2 ∫
dv 2π

n 〈f〉 δ(ω − k · v)
|ε(k,ω)|2 . (2.16)

2.2.2.5 One-dimensional plasma

In order to elucidate the physics content of the fluctuation spectrum, it is

convenient to specialize the discussion to the case of a 1D plasma, for which:

C(k, ω) =
2π

n|k|vT
F (ω/k) (2.17a)

〈
φ2

〉
k,ω

= n0

(
4πq

k2

)2 2π

|k|vT

F (ω/k)
|ε(k,ω)|2 . (2.17b)

Here, F refers the average distribution function, with the normalization fac-

tor of vT extracted, 〈f (v)〉 = (n/vT )F (v), and vT is a thermal velocity. It

is interesting to observe that
〈
φ2

〉
k,ω
∼ (density) × (Coulomb spectrum) ×

(propagator) × (particle emission spectrum) × (screening). Thus, spectral

line structure in the TPM is determined by the distribution of Cerenkov

emission from the ensemble of discrete particles (set by 〈f〉) and the collec-

tive resonances (where ε(k,ω) becomes small).

In particular, for the case of an electron plasma with stationary ions, the

natural collective mode is the electron plasma wave, with frequency ω )

ωp(1 + γk2λ2
D)1/2 (γ: specific heat ratio of electrons). So for ω # ωp, kvT ,

ε→ 1, we have;

〈
φ2

〉
k,ω
) n0

(
4πq

k2

)2 2π

|k|vT
F (ω/k), (2.18a)

where F ∼ exp[−ω2/k2v2
T ] for a Maxwellian distribution, while in the op-

posite limit of ω $ ωp, kvT where ε→ 1 + k−2λ−2
D , the spectrum becomes

〈
φ2

〉
k,ω
) n0(4πq)2

2π

|k|vT

(
1 + 1/k2λ2

D

)−2
. (2.18b)
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In the first, super-celerity limit, the discrete test particle effectively decou-

ples from the collective response, while in the second, quasi-static limit, the

spectrum is that of an ensemble of Debye-screened test particles. This re-

gion also corresponds to the kλDe # 1 range, where the scales are too small

to support collective modes. In the case where collective modes are weakly

damped, one can simplify the structure of the screening response via the

pole approximation, which is obtained by expanding about ωk, i.e.

ε(k, ω) = εr(k,ω) + iIm ε(k,ω)

) εr(k,ωk) + (ω − ωk)
∂ε

∂ω

∣∣∣∣
ωk

+ iIm ε(k, ωk). (2.19)

So since εr(k, ωk) ≈ 0,

1/|ε|2 ) 1
|Im ε|

{
|Im ε|

(ω − ωk)2| ∂ε
∂ω |2 + |Im ε|2

}

) 1
|Im ε| |∂εr/∂ω| · δ (ω − ωk) . (2.20)

Here it is understood that Im ε and ∂εr/∂ω are evaluated at ωk. Notice

that in the pole approximation, eigenmode spectral lines are weighted by

the dissipation Im ε.

The fluctuation spectrum of plasma oscillations in thermal equailibrium

is shown in Fig.2.8. The real frequency and the damping rate of the plasma

oscillation are shown as a function of the wavenumber in (a). In the regime

of kλDe $ 1, the real frequency is close to the plasma frequency, ω ∼ ωp, and

the damping rate is exponentially small. The power spectrum of fluctuation

as a function of the frequency is illustrated in (b) for various values of the

wave number. In the regime of kλDe $ 1, a sharp peak appears near the

eigenfrequency ω ∼ ωk. Owing to the very weak damping, the line width is

narrow. As the mode number becomes large (in the regime of kλDe ∼ 1), the
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(a) (b)

Fig. 2.8. Illustration of the fluctuation spectrum of plasma oscillations. The real

frequency and the damping rate of the plasma oscillation are shown as a function

of the wavenumber in (a). In the regime of kλDe $ 1, ω ∼ ωp holds and that

the damping rate is exponentially small. The power spectrum of fluctuation as a

function of the frequency is illustrated in (b) as a function of the wave number.

In the regime of kλDe $ 1, a high and sharp peak appears near the eignfrequency

ω ∼ ωk. Owing to the very weak damping, the line width is narrow. As the

mode number becomes large an in the regime of kλDe ∼ 1, the bandwidth becomes

broader, and the fluctuation intensity becomes high.

bandwidth becomes broader, showing the fact the fluctuations are generated

and absorbed very rapidly.

2.2.2.6 Fluctuation-dissipation theorem and energy partition

By now, the reader is surely anxious to see if the results obtained using

the test particle model are in fact consistent with the requirements and ex-

pectations of generalized fluctuation theory, as advertised. First, we check

that Fluctuation-Dissipation Theorem is satisfied. This is most easily ac-
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complished for the case of a Maxwellian plasma. There

Im ε = −
ω2

pπ

k|k|
∂ 〈f〉
∂v

∣∣∣∣
ω/k

=
2πω

k2v2
T

ω2
p

|k|vT
FM(

ω

k
), (2.21a)

so using Eq.(2.21a) to relate Im ε(k, ω) to F (ω/kvT ) in Eq.(2.17b) gives

〈
φ2

〉
k,ω

=
8πT

k2ω

Im ε

|ε|2 , (2.21b)

so we finally obtain 〈
D2

〉
k,ω

4π
=

2T

ω
Im ε (2.21c)

is in precise agreement with the statement of the F-DT for a classical, plasma

at temperature T . It is important to re-iterate here that applicability of

the F-DT rests upon to the applicability of linear response theory for the

emission and absorption of each mode. Both fail as the instability marginal

point is approached (from below).

Second, we also examine the k-spectrum of energy, with the aim of com-

paring the TPM prediction to standard expectations for thermal equilib-

rium, i.e. to see whether energy is distributed according to the conventional

wisdom of “T/2 per degree-of-freedom” . To this end, it is useful to write

(using Eq. (2.21)) the electric field energy as;

|Ek,ω|2

8π
=

4πnq2

k|k|

{
F (ω/k)

(1− ω2
p

ω2 )2 + (πω2
p

k|k|F
′)2

}
, (2.22)

where εr ) 1 − ω2
p/ω2 for plasma waves, and F ′ = dF/du|ω/k. The total

electric field energy per mode Ek is given by

Ek =
∫

dω |Ek,ω|2/8π, (2.23a)

so that use of the pole approximation to the collective resonance and a short

calculation then gives

Ek =
neωp

2|k|
F

|F ′| =
T

2
. (2.23b)
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So, yes – the electric field energy for plasma waves is indeed equipartioned!

Since for plasma waves the particle kinetic energy density Ekin equals the

electric field energy density Ek (i.e. Ekin = Ek), the total wave energy

density per mode Wk is constant at T . Note that Eq. (2.23b) does not

imply the divergence of total energy density. Of course, some fluctuation

energy is present at very small scales (kλDe " 1) which cannot support

collective modes. On such scales, the pole expansion is not valid and simple

static screening is a better approximation. A short calculation gives, for

k2λ2
De > 1, Ek

∼= (T/2)/k2λ2
De , so that the total electric energy density is

〈
E2

8π

〉
=

∫
dk Ek

=
∫ ∞

−∞

dk

2π

T/2
(1 + k2λ2

De)
∼

(
nT

2

)(
1

nλDe

)
. (2.24)

As Eq. (2.24) is for 1D, there n has the dimensions of particles-per-distance.

In 3D, the analogue of this result is
〈

E2

8π

〉
∼

(
nT

2

)(
1

nλ3
De

)
. (2.25)

so that the total electric field energy equals the total thermal energy times

the discreteness factor 1/nλ3
De ∼ 1/N , where N is the number of particles in

a Debye sphere. Hence
〈
E2/8π

〉
$ nT/2, as is required for a plasma with

weak correlations.

2.2.3 Relaxation Near Equilibrium and the Balescu-Lenard

Equation

Having determined the equilibrium fluctuation spectrum using the TPM,

we now turn to the question of how to use it to calculate relaxation near

equilibrium. By “relaxation” we mean the long time evolution of the mean

(i.e. ensemble averaged) distribution function 〈f〉. Here ‘long time’ means
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long or slow evolution in comparison to fluctuation time scales. Generally,

we expect the mean field equation for the prototypical example of a 1D

electrostatic plasma to have the form of a continuity equation in velocity

space, i.e.

∂ 〈f〉
∂t

= − ∂

∂v
J(v). (2.26)

Here, J(v) is a flux or current and 〈f〉 is the corresponding coarse grained

phase space density. J −−−−→
v→±∞

0 assures conservation of total 〈f〉. The

essence of the problem at hand is how to actually calculate J(v)! Of course

it is clear from the Vlasov equation that J(v) is simply the average accel-

eration 〈(q/m)Eδf〉 due to the phase space density fluctuation δf . Not

surprisingly, then, J(v) is most directly calculated using a mean field ap-

proach. Specifically, simply substitute the total δf into 〈(q/m)Eδf〉 to cal-

culate the current J(v). Since δf = f c + f̃ , J(v) will necessarily consist of

two pieces. The first piece, 〈(q/m)Ef c〉, accounts for the diffusion in veloc-

ity driven by the TPM potential fluctuation spectrum. This contribution

can be obtained from a Fokker-Planck calculation using the TPM spectrum

as the noise. The second piece,
〈
(q/m)Ef̃

〉
, accounts for relaxation driven

by the dynamic friction between the ensemble of discrete test particles and

the Vlasov fluid. It accounts for the evolution of 〈f〉 which must accompany

the slowing down of a test particle by wave drag. The second piece has the

structure of a drag term. As is shown in the derivation of Eq. (2.16), 〈Ef c〉

ultimately arises from the discreteness of particles, f̃1.

The kinetic equation for 〈f〉 which results from this mean field calcula-

tion was first derived by R.Balescu and A. Lenard, and so is named in their

honor. The diffusion term of the Balescu-Lenard (B-L) equation is very

similar to the quasilinear diffusion operator, discussed in Chapter 3, though
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the electric field fluctuation spectrum is prescribed by the TPM and the

frequency spectrum is not restricted to eigenmode frequency lines, as in the

quasilinear theory. The total phase space current J(v) is similar in structure

to that produced by the glancing, small angle Coulomb interactions which

the Landau collision integral calculates. However, in contrast to the Landau

theory, the B-L equation incorporates both static and dynamic screening,

and so treats the interaction of collective processes with binary encounters.

Screening also eliminates the divergences in the Landau collision integral (i.e.

the Coulomb logarithm) which are due to long range electrostatic interac-

tions. Like the Landau integral, the B-L equation is ultimately nonlinear in

〈f〉.

At this point, the skeptical reader will no doubt be entertaining question

like “What kind of relaxation is possible here?”, “How does it differ from

the usual collisional relaxation process?” and “Just what, precisely, does

‘near equilibrium’ mean?”. One point relevant to all these questions is that

it is easy to define states which have finite free energy, but which are stable

to collective modes. One example is the current driven ion acoustic (CDIA)

system shown in Fig.2.9. Here the non-zero current, which shifts the elec-

tron Maxwellian, constitutes free energy. However, since the shift does not

produce a slope in 〈fe〉 sufficient to overcome ion Landau damping, the free

energy is not accessible to linear CDIA instabilities. Nevertheless, electron

→ ion momentum transfer is possible, and can result in electron relaxation,

since the initial state is not one of maximum entropy. Here, relaxation oc-

curs via binary interactions of dressed test particles. Note however, that in

this case relaxation rates may be significantly faster than for ’bare’ particle

collisions, on account of fluctuation enhancement by weakly damped collec-
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Fig. 2.9. Structure of 〈fi〉 , 〈fe〉 for stable plasma. Velocity space configuration,

showing electron plasma wave resonance on the tail of fe and ion acoustic wave

resonance in the bulk of fe, fi. In the case with Te # Ti, waves can resonate with

the bulk of the electron distribution while avoiding ion Landau damping. The slope

of fe is small at resonance, so ion acoustic waves are only weakly damped. In the

case with Te ∼ Ti, ion acoustic waves resonant in the bulk of fe cannot avoid ion

Landau damping, so the collective modes are heavily damped.

tive modes. Thus, the B-L theory offers both something old and something

new relative to its collisional antecedent, the Landau theory.

In order to best elucidate the physics of relaxation processes, we keep

the calculations as simple as possible and divide our discussion into three

parts. The basic theory is developed for an electrostatic plasma in one

dimension, and then applied to single species and two species relaxation

processes. Single species relaxation in 3D is then considered followed by a

discussion of collective enhancement of momentum exchange.
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2.2.3.1 Kinetic equation for mean distribution function

The Balescu-Lenard equation may be derived by a mean-field calculation of

the fluctuation-induced acceleration (q/m) 〈Eδf〉. Specifically,

∂ 〈f〉
∂t

= − ∂

∂v

q

m
〈Eδf〉

= − ∂

∂v
J(v) (2.27)

where J(v) must be calculated using the total δf , which includes both the

linear response f c and the discreteness fluctuation f̃ . Thus, substitution of

δf = f c + f̃ ,

yields

J(v) = −
(

q

m
〈Ef c〉+ q

m

〈
Ef̃

〉)

= −D(v)
∂ 〈f〉
∂v

+ Fr(v) (2.28)

where D(v) is the fluctuation-induced diffusion, while Fr(v) is the dynamical

friction term. Consistent with linear response theory, we can then write:

f c
k,ω = −i

(q/m)Ek,ω

ω − kv

∂ 〈f〉
∂v

. (2.29a)

so for stationary fluctuations, a short calculation gives:

D(v) =
∑

k,ω

q2

m2
k2

〈
φ2

〉
k,ω

πδ(ω − kv). (2.29b)

The spectrum
〈
φ2

〉
k,ω

is understood to be the test particle model spectrum,

i.e. that of Eq. (2.17b). Similarly, the dynamical friction term Fr(v) is

given by

Fr(v) = − q

m

∑

k,ω

ik
〈
φf̃

〉

k,ω
, (2.30a)
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where, via Eq. (2.6b), we have:

〈
φf̃

〉

k,ω
=

4πn0q

k2

∫
dv

〈
f̃ f̃

〉

k,ω

ε(k,ω)∗
. (2.30b)

This result explains that the discreteness of particles are the source of cor-

relations in the excited mode. Since

〈
φ2

〉
k,ω

=
(

4πn0q

k2

)2 C(k,ω)
|ε(k,ω)|2

,

and ( from Eq. (2.14) )

C(k, ω) =
〈
ñ2

〉
k,ω

=
∫

dv 2πδ(ω − kv) 〈f(v)〉 ,

we have
〈
φf̃

〉

k,ω
=

(
4πn0q

k2

)
2πδ(ω − kv) 〈f〉

n0|ε(k,ω)|2 .

Thus, the current J(v) is given by;

J(v) = −D(v)
∂ 〈f〉
∂v

+ Fr(v)

= −
∑

k,ω

(
4πn0q

k2

)
q

m

(
2πδ(ω − kv)
n0|ε(k,ω)|2

)
k

×
{(

4πn0q

k2

)
πk

|k|vT

(
q

m

)
F (

ω

k
)
∂ 〈f〉
∂v

+ Im ε(k,ω) 〈f〉
}

. (2.31)

Note that the contributions from the diffusion D(v) and dynamical friction

Fr(v) have been grouped together within the brackets. Poisson’s equation

relates ε(k, ω) to the electron and ion susceptibilities χ(k,ω) by

ε(k,ω) =
(

1 +
4πn0q

k2

)[
χi(k,ω)− χe(k,ω)

]
,

where χi, χe are the ion and electron susceptibilities defined by

nk,ω = χi(k, ω)φk,ω.

It is straightforward to show that

Im ε(k, ω) = −
πω2

p

k2

k

|k|vT
F ′(ω/k) + Im εi(k, ω), (2.32a)
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where

Im εi(k,ω) =
4πn0q

k2
Imχi(k,ω). (2.32b)

Here εi(k, ω) is the ion contribution to the dielectric function. Thus, we

finally obtain a simplified expression for J(v), which is

J(v) = −
∑

k,ω

(
ω2

p

k2

)2( 2π2

n0kvT

)
δ(ω − kv)
|ε(k, ω)|2

×
{

F
(ω

k

) ∂ 〈f〉
∂v

− 〈f(v)〉F ′
(ω

k

)
+ Im εi(k,ω) 〈f〉

}
. (2.33)

Equation (2.33) gives the general form of the velocity space electron cur-

rent in the B-L equation for electron relaxation, as described within the

framework of the TPM.

In order to elucidate the physics content of J(v), it is instructive to re-

write Eq. (2.33) in alternate forms. One way is to define the fluctuation

phase velocity by u = ω/k, so that

J(v) = −
∑

k,ω

(
ω2

p

k2

)2( 2π2

n0kvT

)
δ(u− v)

|k||ε(k, ω)|2

×
{

F (u) 〈f(v)〉′ − F ′(u) 〈f(v)〉+ Im εi(k, ω) 〈f(v)〉
}

. (2.34)

Alternatively, one could just perform the summation over frequency to ob-

tain

J(v) = −
∑

k

(
ω2

p

k2

)2( π

n0kvT

)
1

|ε(k, kv)|2

×
{

F (v)
∂ 〈f(v)〉

∂v
− 〈f(v)〉F ′(v) + Im εi(k, kv) 〈f(v)〉

}
. (2.35)

Finally, it is also useful to remind the reader of the counterpart of Eq.(2.33)

in the unscreened Landau collision theory, which we write for 3D as:

Jα(p) = −
∑

e,i

∫

qα

d3q

∫
d3p′W (p, p′, q)qαqβ

{
f(p′)

∂f(p)
∂pβ

− ∂f(p′)
∂p′β

f(p)
}

.

(2.36)
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In Eq.(2.36), W (p,p′, q) is the transition probability for a collision (with

momentum transfer q) between a ‘test particle’ of momentum p and a ‘field

particle’ of momentum p′. Here the condition |q| $ |p|, |p|′ applies, since

long range Coulomb collisions are ‘glancing’.

2.2.3.2 Offset on Landau-Rosenbluth Theory

Several features of J(v) are readily apparent. First, just as in the case of the

Landau theory, the current J(v) can be written as a sum of electron-electron

and electron-ion scattering terms, i.e.

J(v) = −
[
De,e(v)

∂ 〈f〉
∂v

+ Fe,e(v) + Fe,i(v)
]
. (2.37)

Here De,e(v) refers to the diffusion (in velocity) of electrons by fluctuations

excited by electron discreteness emission, Fe,e(v) is the dynamical friction

on electrons due to fluctuations generated by discreteness, while Fe,i is the

electron-ion friction produced by the coupling of emission (again due to

electron discreteness) to dissipative ion absorption. Interestingly, in 1D,

−De,e(v)
∂ 〈f〉
∂v

+ Fe,e(v) ∼ δ(u− v){−F (u) 〈f〉′ + F ′ 〈f〉} = 0,

since F = 〈f〉 for single species interaction. Thus, we see that electron -

electron friction exactly cancels electron diffusion in 1D. In this case,

J(v) ∼ δ(u− v)Im εi(k, ω) 〈fe(v)〉

so that electron relaxation is determined solely by electron-ion friction. This

result is easily understood from consideration of the analogy between same-

species interaction in a stable, 1D plasma and like-particle collisions in 1D

(Fig.2.10). On account of conservation of energy and momentum, it is trivial

to show that such collisions leave final state = initial state, so no entropy

production is possible and no relaxation can occur. This fact is manifested in
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Fig. 2.10. Like-Particle collisions in (a)1D and (b)3D.

the B-L theory by the cancellation between electron - electron terms - since

the only way to produce finite momentum transfer in 1D is via inter-species

collisions, the only term which survives in J(v) is Fe,i(v). Note that this

result is not a purely academic consideration, since a strong magnetic field

B0 often imposes a 1D structure on the wave -particle resonance interaction

in more complicated problems.

A detail comparison and contrast between the Landau theory of collisions

and the B-L theory of near-equilibrium relaxation is presented in Table 2.2.

2.2.3.3 Resistivity (Relaxation in one-dimensional system)

Having derived the expression for J(v), it can then be used to calculate

transport coefficients and to macroscopically characterize relaxation. As an

example, we consider the effective resistivity associated with the current

driven system of Fig.2.9. To constract an effective Ohm’s Law for this
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Table 2.2. Comparison of Landau and Balescu-Lenard relaxation theory

Laudau Theory B-L Theory

Physical

scenario

‘test’ particle

scattered by distribution

of ‘field’ particles

test particle scattered by

distribution of fluctuations

with vph = ω/k,

produced via discreteness

Scatterer

distribution

f(p′)

field particles distribution

F (u), u = ω/k

fluctuation phase velocity

distribution

Correlation

uncorrelated particles as discrete uncorrelated

assumed molecular chaos, test particles,

〈f(1, 2)〉 = 〈f(1)〉 〈f(2)〉
〈
f̃ f̃

〉
= (〈f〉 /n)δ(x )δ(v )

Screening

none -

1/|ε(k,ω)|2Coulomb lnΛ factor

put in ‘by intuition’

Scattering

strength

|q|$ |p| linear response and

weak deflection unperturbed orbits

Interaction

Selection Rule

W (p,p′, q) = δ(p− p′) δ(u− v) in 1D

in 1D, 1 species δ(k · (v − v′)) in 3D

system, we simply write

∂ 〈f〉
∂t

+
q

m
E0

∂ 〈f〉
∂v

= −∂J(v)
∂v

, (2.38a)

and then multiply by n0qv and integrate to obtain, in the stationary limit,

E0 = −4πn0q

ω2
p

∫
dv J(v)

= 4πn0|q|
∑

k,ω

ω2
p

(k2)2
(2π/|k|)
n0kvT

(
Im εi(k, ω)
|ε(k, ω)|2

) 〈
fe

(ω

k

)〉

≡ ηeffJ0. (2.38b)

Not surprisingly, the response of 〈fe〉 to E0 cannot unambiguously be written

as a simple, constant effective resistivity, since the resonance factor δ(ω −
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kv) and the k, ω dependence of the TPM fluctuation spectrum conflate the

field particle distribution function with the spectral structure. However, the

necessary dependence of the effective resistivity on electron-ion interaction

is readily apparent from the factor of Im εi(k, ω). In practice, a non-trivial

effect here requires a finite but not excessively strong overlap of electron and

ion distributions. Note also that collective enhancement of relaxation below

the linear instability threshold is possible, should Im ε(k, ω) become small.

2.2.3.4 Relaxation in three-dimensional system

Having discussed the 1D case at some length, we now turn to relaxation

in 3D. The principal effect of three dimensionality is to relax the tight link

between particle velocity v and fluctuation phase velocity (ω/|k|)k̂. Alter-

natively put, conservation constraints on like-particle collisions in 1D force

the final state = initial state, but in 3D, glancing collisions which conserve

energy and the magnitude of momentum |p|, but change the particle’s di-

rections, are possible. The contrast between 1D and 3D is illustrated in

Fig.2.10. In 3D, the discreteness correlation function is

C(k, ω) = 〈ññ〉k,ω =
∫

d3 v
2π

n0
δ(ω − k · v) 〈f〉 . (2.39)

So the B-L current J(v) for like particle interactions becomes:

J(v) = −
∑

k,ω

(
ω2

p

k2

)2 2π2δ(ω − k · v)
vT n0|ε(k, ω)|2

× k

{ ∫
dv′ δ(ω − k · v′)

〈
f(v′)

〉
k · ∂ 〈f〉

∂v

−
∫

dv′ δ(ω − k · v′)k · ∂ 〈f〉
∂v′

〈f(v)〉
}

. (2.40a)

Note that the product of delta functions can be re-written as

δ(ω − k · v)δ(ω − k · v′) = δ(ω − k · v)δ(k · v − k · v′).
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We thus obtain an alternate form for J(v), which is

J(v) = −
∑

k,ω

(
ω2

p

k2

)2 2π2δ(ω − k · v)
vT n0|ε(k, ω)|2

×
{

k

∫
dv′ δ(k · v − k · v′)

[ 〈
f(v′)

〉
k · ∂ 〈f〉

∂v
− k · ∂ 〈f〉

∂v′
〈f(v)〉

]}
.

(2.40b)

This form illustrates an essential aspect of 3D, which is that only the parallel

(to k) components of test and field particle velocities v and v′ need be equal

for interaction to occur. This is in distinct contrast to the case of 1D, where

identity, i.e. v = v′ = u, is required for interaction. Thus, relaxation by

like-particle interaction is possible, and calculations of transport coefficients

are possible, following the usual procedures of the Landau theory.

2.2.3.5 Dynamic Screening

We now come to our final topic in B-L theory, which is dynamic screening. It

is instructive and enlightening to develop this topic from a direction slightly

different than that taken by our discussion up till now. In particular, we

will proceed from the Landau theory, but will calculate momentum transfer

including screening effects and thereby arrive at a B-L equation.

2.2.3.6 Relaxation in Landau model

Starting from Eq. (2.36), the Landau theory expression for the collision-

induced current (in velocity) may be written as

Jα(p) =
∑

species

∫
d3p′

[
f(p)

∂f(p′)
∂p′β

− f(p′)
∂f(p)
∂pβ

]
Bα,β , (2.41a)

where

Bα,β =
1
2

∫
dσ qαqβ|v − v′|. (2.41b)
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The notation here is standard: dσ is the differential cross section and q

is the momentum transfer in the collision. We will calculate Bα,β directly,

using the some physics assumptions as in the TPM. A background or ‘field’

particle with velocity v′, and charge e′ produces a potential field

φk,ω =
4πe′

k2ε(k, ω)
2πδ(ω − k · v′), (2.42a)

so converting the time transform gives

φk(t) =
4πe′

k2ε(k,k · v′)e
−ik·v′t. (2.42b)

From this, it is straightforward to calculate the net deflection or momentum

transfer q by calculating the impulse delivered to a test particle with charge

e moving along an unperturbed trajectory of velocity v. This impulse is:

q = −
∫

r=+vt

∂V

∂r
dt, (2.43a)

where the potential energy V is just

V = eφ

= 4πee′
∫

d3k
eik·re−ik·v′t

k2ε(k, k · v′) . (2.43b)

Here ρ is the impact parameter for the collision, a cartoon of which is

sketched in Fig. 2.11. A short calculation then gives the net momentum

transfer q,

q = 4πee′
∫

d3k

(2π3)
−ikeik· 2πδ(k · (v − v′))

k2ε(k, k · v′)

= 4πee′
∫

d2k⊥
(2π3)

−ik⊥eik⊥·

k2ε(k, k · v′)|v − v′| . (2.44)

To obtain Eq. (2.44), we used

δ(k · (v − v′)) =
δ(k‖)
|v − v′| ,
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Fig. 2.11. Deflection orbit and unperturbed orbit

and the directions ‖ and ⊥ are defined relative to the direction of v − v′

Since J ∼ ρ2, we may write Bα,β as

Bα,β =
∫

d2ρ qαqβ|v − v′|. (2.45)

Noting that the d2ρ integration just produces a factor of (2π)2δ(k⊥ + k′⊥),

we can then immediately perform one of the
∫

d2k⊥ integrals in Bα,β to get

Bα,β = 2e2e′2
∫

d2k⊥
k⊥αk⊥β

|k2
⊥ε(k, k · v′)|2|v − v′|

. (2.46)

It is easy to see that Eq.(2.46) for Bα,β (along with Eq.(2.41a)) is entirely

equivalent to the B-L theory for J(v). In particular, note the presence of

the dynamic screening factor ε(k, k ·v′). If screening is neglected, ε→ 1 and

Bα,β ∼
∫

d2k⊥
k2
⊥

|ε|k4
⊥
∼

∫
dk⊥/k⊥ ∼ ln(k⊥max/k⊥min)

which is the familiar Coulomb logarithmfrom the Landau theory. Note that
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if k, ω → 0,

k2
⊥ε ∼ k2

⊥ + 1/λ2
D

so that Debye screening eliminates the long range, divergence (associated

with k⊥min) without the need for an ad-hoc factor. To make the final step

toward recovering the explicit B-L result, one can ‘un-do’ the dk‖ integration

and the frequency integration to find

Bα,β = 2(ee′)2
∫ ∞

−∞
dω

∫

k<kmax

d3k δ(ω−k·v)δ(ω−k·v′)
kαkβ

k4|ε(k,ω)|2 . (2.47)

Here kmax is set by the distance of closest approach, i.e.

kmax ∼
µv2

rel

2ee′
.

Substituting Eq.(2.47) for Bα,β into Eq.(2.41a) recovers Eq.(2.40a). This

short digression convincingly demonstrates the equivalence of the B-L theory

to the Landau theory with dynamic screening.

2.2.3.7 Collective mode

We now explore the enhancement of relaxation by weakly damped collective

modes. Consider a stable, two species plasma with electron and ion distri-

bution functions as shown in Fig. 2.9. This plasma has no free energy (i.e.

no net current), but is not necessarily a maximum entropy state, if Te /= Ti.

Moreover, the plasma supports two types of collective modes, namely

i.) electron plasma waves, with vTe < ω/k.

ii.) ion acoustic waves, with vTi < ω/k < vTe,

where vTe and vTi are the electron and ion thermal speeds, respectively.

Electron plasma waves are resonant on the tail of 〈fe〉, where there are

few particles. Hence plasma waves are unlikely to influence relaxation in

a significant way. On the other hand, ion acoustic waves are resonant in
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the bulk of the elctron distribution. Moreover, if Te # Ti, it is easy to

identify a band of electron velocities with significant population levels f but

for which ion Landau damping is negligible. Waves resonant there will be

weakly damped, and so may substantially enhance relaxation of 〈fe(v)〉. It is

this phenomenon of collectively enhanced relaxation that we seek to explore

quantitatively.

To explore collective enhancement of relaxation, we process from Eq.(2.47),

make a pole expansion around the ion acoustic wave resonance and note for

ion acoustic wave, ω < k · v (for electrons), so

Bα,β = 2πq4
∫ ∞

−∞
dω

∫
d3k δ(k · v)δ(k · v′) δεr(k,ωk)

|Im ε(k,ω)| . (2.48)

Here εr(k,ωk) = 0 for wave resonance, and e = e′ = q, as scattered and field

particles are all electrons. Im ε(k,ω) refers to the collective mode dissipation

rate. Now, changing variables according to

R = k · n̂,

k1 = k · v, k2 = k · v′

n̂ = v × v′/|v × v′|.

We have

d3k = dRdk1dk2/|v × v′|

so the k1, k2 integrals in Eq.(2.48) may be immediately performed, leaving

Bα,β =
2πq4nαnβ

|v × v′| 2
∫

R>0
dk

∫ ∞

−∞
dω

δ(εr(k,ω))
R2|Im ε| . (2.49)

We remind the reader that this is the piece of Bα,β associated with field

particle speeds or fluctuation phase speeds v′ ∼ ω/k $ vTe for which the

collective enhancement is negligible and total J(v) is, of course, the sum of

both these contributions. Now, the dielectric function for ion acoustic waves
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is

Re ε(k,ω) = 1−
ω2

pi

ω2
+

1
k2λ2

D

. (2.50a)

Im ε(k,ω) =
√

π

2
ω

k3

(
1

λ2
DevTe

+
1

λ2
DivTi

e−ω2/2k2v2
Ti

)
. (2.50b)

Here λDe and λDi are the electron and ion Debye lengths, respectively. An-

ticipating the result that

ω2 =
k2c2

s

1 + k2λ2
De

for ion acoustic waves, Eq.(2.50a, 2.50b) togother suggest that the strongest

collective enhancement will come from short wavelength (i.e. k2λ2
De # 1),

because Im ε(k, ω) is smaller for these scales, since

Im ε(k, ω) ∼ 1
k2λ2

De

ω

kvTe
.

For such short wavelengths, then

δ(εr) ∼= δ(1− ω2
pi/ω2)

=
1
2
ωpi

[
δ(ω − ωpi) + δ(ω + ωpi)

]
.

Evaluating Bα,β, as given by Eqs. (2.48) and (2.49), in this limit then finally

gives,

Bα,β =
(

4πq2ωpinαnβ

|v × v′|

) ∫
dk

k2|Im ε(k, ωpi)|

=
2
√

2πq4vTeλ
2
De

|v × v′|λ2
Di

nαnβ

∫
dξ

/[
1 + exp

(
− 1

2ξ
+

L

2

)]
, (2.51a)

where:

L = ln
[(

Te

Ti

)2 mi

me

]
(2.51b)

and ξ = k2λ2
De. Equation (2.51a) quite clearly illustrates that maximal

relaxation occurs for minimal Im ε(ξ, L), that is when exp[−1/2ξ + L/2] $
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1. That is, the collective enhancement of discreteness-induced scattering is

determined by Im ε for the least damped mode. This occurs when ξ ! 1/L,

so that the dominant contribution to Bα,β comes from scales for which

k2 = (k · n̂)2 < 1/(λ2
DeL).

Note that depending on the values of L and the Coulomb logarithm (ln Λ,

which appears in the standard Coulombic scattering contribution to Bα,β

from v′ ∼ vTe), the collectively enhanced Bα,β due to low velocity field

particles (v′ $ vTe) may even exceed its familiar Coulomb scattering coun-

terpart. Clearly, this is possible only when Te/Ti # 1, yet not so large as to

violate the tenets of the TPM and B-L theories.

2.2.4 Test Particle Model: Looking Back and Looking Ahead

In this section of the introductory chapter, we have presented the test par-

ticle model for fluctuations and transport near thermal equilibrium. As

we mentioned at the beginning of the chapter, the TPM is the most basic

and most successful fluctuation theory for weakly collisional plasmas. So,

despite its limitation to stable, quiescent plasmas, the TPM has served as

a basic paradigm for treatments of the far more difficult problems of non-

equilibrium plasma kinetics, such as plasma turbulence, turbulent transport,

self-organization etc. Given this state of affairs, we deem it instructive to

review the essential elements of the TPM and place the subsequent chap-

ters of this book in the context of the TPM and its elements. In this way,

we hope to provide the reader with a framework from which to approach

the complex and sometimes bewildering subject of the physical kinetics of

non-equilibrium plasmas. The discussion which follows is summarized in

Table 2.3. We discuss and compare the test particle model to its non-
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equilibrium descendents in terms of both physics concepts and theoretical

constructs.

Regarding physics concepts, the TPM is fundamentally a “near equilib-

rium” theory, which presumes a balance of emission and absorption at each

k. In a turbulent plasma, non-linear interaction produces spectral transfer

and a spectral cascade, which de-localize the location of absorption from the

region of emission in k,ω space. A spectral transfer turbulence energy from

one region (i.e. emission) to another (i.e. damping). There two cases are

contrasted in Fig.2.1.

A second key concept in the TPM is that emission occurs only via Cerenkov

radiation from discrete test particles. Thus, since the only source for collec-

tive modes is discreteness, we always have

∇ · εE = 4πqδ(x− x(t))

so

〈
φ2

〉
k,ω

=
〈
ñ2

〉

|ε(k,ω)|2 .

In contrast, for non-equilibrium plasmas, nonlinear coupling produces inco-

herent emission so the energy in mode k evolves according to

∂

∂t

〈
E2

〉
k

+

(
∑

k′

C(k, k′)
〈
E2

〉
k′
Tck,k′

)
〈
E2

〉
k

+ γdk
〈
E2

〉
k

=
∑

p,q
p+q=k

C(p, q)τc p,q
〈
E2

〉
p

〈
E2

〉
q

+ SDk
〈
E2

〉
k

(2.52)

where SDk is the discreteness source and γdk is the linear damping for the

mode k. For sufficient fluctuation levels, the nonlinear noise term (i.e. the

first on the RHS) will clearly dominate over discreteness. A similar comment

can be made in the context of the LHS of Eq.(2.52), written above. Nonlinear
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Table 2.3. Test particle model and its non-equilibrium descendents:

physical concepts and theoretical constructs

Test Particle Model Non-Equilibrium Descendent

Physics Concepts

emission vs. absorption

balance per k

spectral cascade, transfer,

inertial range (Chapter 5, 6)

discreteness noise
incoherent mode-coupling (Chapter 5, 6),

granulation emission (Chapter 8)

relaxation by

screened collisions

collective instability driven relaxation,

quasilinear theory, granulation interaction

(Chapter 3, 8)

Theoretical Constructs

linear response

unperturbed orbit

turbulence response, turbulent diffusion,

resonance broadening (Chapter 4,6)

damped mode response

nonlinear dielectric,

wave-wave interaction,

wave kinetics (Chapter 5, 6)

mean field theory
mean field theory without and with

granulations (Chapter 3, 8)

discreteness-driven

stationary spectrum

wave kinetics,

renormalized mode coupling,

disparate scale interaction (Chapter 5 - 7)

Balescu-Lenard,

screened Landau equations

quasilinear theory

granulation relaxation theory

(Chapter 3, 8)

damping will similarly eclipse linear response damping for sufficiently large

fluctuation levels.

A third physics concept is concerned with the mechanism physics of relax-

ation and transport. In the TPM, these occur only via screened collisions.
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Collective effects associated with weakly damped modes may enhance relax-

ation but do not fundamentally change this picture. In a non-equilibrium

plasma, collective modes can drive relaxation of the unstable 〈f〉, and non-

linear transfer can couple the relaxation process to thus enhance its rate.

In the realm of theoretical constructs and methods, both the test particle

model and its non-equilibrium counterparts are fundamentally mean-field

type approaches. However, they differ dramatically with respect to particle

and model responses, nature of the wave spectrum and in how relaxation

is calculated. The TPM assumes linear response theory is valid, so particle

response functions exhibit only ‘bare’ Landau resonances. In contrast, scat-

tering by strong electric field fluctuations will broaden the Landau resonance

and renormalize the Landau propagator, so that,

Rk,ω ∼ eikx
∫ ∞

0
eiωτe−ikx(−τ)dτ

∼
∫ ∞

0
ei(ω−kv)τdτ = i/(ω − kv) (2.53a)

becomes

Rk,ω ∼
∫ ∞

0
eiωτ e−ikx0(−τ)

〈
e−ikδx(−τ)

〉
dτ

∼
∫ ∞

0
ei(ω−kv)τ− k2D

3 τ3
dτ ∼ i/(ω − kv + i/τc), (2.53b)

where 1/τc = (k2D/3)1/3. This is equivalent to the renormalization

[
− i(ω − kv)

]−1 →
[
− i(ω − kv)− ∂

∂v
D

∂

∂v

]−1

. (2.53c)

Here D = D[
〈
E2

〉
] is a functional of the turbulence spectrum. In a similar

way to that sketched in Eq. (2.53), collective responses are renormalized and

broadened by nonlinear wave interaction. Moreover, in the non-equilibrium

case, a separate wave kinetic equation for N(k,x, t), the wave population

density, is required to evolve the wave population in the presence of sources,
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non-linear interaction and refraction, etc. by disparate scales. This wave

kinetic equation is usually written in the form

∂N

∂t
+ (vg + v) ·∇N − ∂

∂x
(ω + k · v) · ∂N

∂k
= SkN + CK(N). (2.54)

Since in practical problems, the mean field or coarse grained wave popu-

lation density 〈N〉 is of primary interest, a similar arsenal of quasi-linear

type closure techniques has been developed for the purpose of extracting

〈N〉 from the wave kinetic equation. We conclude by noting that this dis-

cussion, which began with the TPM, comes full circle when one considers

the effect of nonlinear mode coupling on processes of relaxation and trans-

port. In particular, mode localized coupling produces phase space density

vortexes or eddys in the phase space fluid. These phase space eddys are

called granulations, and resemble a macroparticle. Such granulations are

associated with peaks in the phase space density correlation function. Since

these granulations resemble macroparticles, it should not be too surprising

that they drive relaxation via a mechanism similar to that of dressed test

particles. Hence, the mean field equation for 〈f〉 in the presence of granu-

lations has the structure of a Balescu-Lenard equation, though of course its

components differ from those discussed in this chapter.

2.3 K41 Beyond Dimensional Analysis - Revisiting the Theory of

Hydrodynamic Turbulence

We now turn to our second paradigm, namely Navier-Stokes turbulence,

and the famous Kolmogorov cascade through the inertial range. This is

the classic example of a system with dynamics controlled by a self-similar

spectral flux. It constitutes the ideal complement to the TPM, in that it

features the role of transfer, rather than emission and absorption. We also
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discuss related issues in particle dispersion, two-dimensional turbulence and

turbulent pipe flows.

2.3.1 Key Elements in Kolmogorov Theory of Cascade

2.3.1.1 Kolmogorov theory

Surely everyone has encountered the basic ideas of Kolmogorov’s theory

of high Reynolds number turbulence! Loosely put, empirically motivated

assumptions of

i) spatial homogeneity - i.e. the turbulence is uniformly distributed in

space,

ii) isotropy - i.e. the turbulence exhibits no preferred spatial orientation,

iii) self-similarity - i.e. all inertial range scales exhibit the same physics

and are equivalent. Here ”inertial range” refers to the range of scales 0

smaller than the stirring scale 00 but larger than the dissipation scale

(0d < 0 < 00),

iv) locality of interaction - i.e. the (dominant) nonlinear interactions in

the inertial range are local in scale, i.e. while large scales advect small

scales, they cannot distort or destroy small scales, only sweep them

around. Inertial range transfer occurs via like-scale straining, only.

Assumptions i) - iv) and the basic idea of an inertial range cascade are

summarized in Fig.2.12. Using assumptions i) - iv), we can state that energy

thru-put must be constant for all inertial range scales, so

ε ∼ v3
0/00 ∼ v(0)3/0, (2.55a)

and

v(0) ∼ (ε0)1/3, (2.55b)
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Fig. 2.12. Basic cartoon explanation of the Richardson-Kolmogorov cascade. En-

ergy transfer in Fourier-space (a), and real space (b).

E(k) ∼ ε2/3k−5/3, (2.55c)

which are the familiar K41 results. The dissipation scale 0d is obtained by

balancing the eddy straining rate ε1/3/02/3 with the viscous dissipation rate

ν/02 to find the Kolmogorov microscale,

0d ∼ ν3/4/ε1/4. (2.56)
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2.3.1.2 Richardson theory of particle separation

A related and important phenomenon, which also may be illuminated by

scaling arguments, is how the distance between two test particles grows in

time in a turbulent flow. This problem was first considered by Louis Fry

Richardson, who was stimulated by observations of the rate at which pairs

of weather balloons drifted apart from one another in the (turbulent) atmo-

sphere. Consistent with the assumption of locality of interaction in scale,

Richardson ansatzed that the distance between two points in a turbulent

flow increases at the speed set by the eddy velocity on scales correspond-

ing (and comparable) to the distance of separation (Fig. 2.13). Thus, for

distance 0,

d0

dt
= v(0), (2.57a)

so using the K41 results (2.55b) gives

0(t) ∼ ε1/3t3/2, (2.57b)

a result which Richardson found to be in good agreement with observa-

tions. Notice that the distance of separation grows super-diffusively, i.e.

0(t) ∼ t3/2, and not ∼ t1/2, as in the textbook case of Brownian motion.

The super-diffusive character of 0(t) is due to the fact that larger eddys

support larger speeds, so the separation process is self-accelerating. Note

too, that the separation grows as a power of time, and not exponentially, as

in the case of a dynamical system with positive Lyapunov exponent. This

is because for each separation scale 0, there is a unique corresponding sepa-

ration velocity v(0), so in fact there is a continuum of Lyapunov exponents

(one for each scale) in the case of a turbulent flow. Thus, 0(t) is algebraic,

not exponential! By way of contrast, the exponential rate of particle pair
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Fig. 2.13. Basic idea of the Richardson dispersion problem. The evolution of the

separation of the two points (black and white dots) l follows the relation dl/dt = v

(a). If the advection field scale exceeds l, the particle pair swept together, so l is

unchanged (b). If the advection field scale is less than l, there is no effect (except

diffusion) on particle dispersion (c).

separation in a smooth chaotic flow is set by the largest positive Lyapunov

exponent. We also remark here that while intermittency corrections to the

K41 theory based upon the notion of a dissipative attractor with a fractal

dimension less than three have been extensively discussed in the literature,

the effects of intermittency in the corresponding Richardson problem have

received relatively little attention. This is unfortunate, since, though it may
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seem heretical to say so, the Richardson problem is, in many ways, more

fundamental than the Kolmogorov problem, since unphysical effects due

to sweeping by large scales are eliminated by definition in the Richardson

problem. Moreover, the Richardson problem is of interest to calculating the

rate of turbulent dispersion and the lifetime of particles or quasiparticles

of turbulent fluid. An exception to the lack of advanced discussion of the

Richardson problem is the excellent review article by Falkovich, Gawedski

and Vergassola, 2001.

2.3.1.3 Stretching and generation of enstrophy

Of course, ‘truth in advertising’ compels us to emphasize that the scaling

arguments presented here contain no more physics than that which was in-

serted ab initio. To understand the physical mechanism underpinning the

Kolmogorov energy cascade, one must consider the dynamics of structures

in the flow. As is well known, the key mechanism in 3D Navier-Stokes tur-

bulence is vortex tube stretching, schematically shown in Fig. 2.14. There,

we see that alignment of strain ∇v with vorticity ω (i.e. ω ·∇v /= 0) gener-

ates small scale vorticity, as dictated by angular momentum conservation in

incompressible flows. The enstrophy (mean squared vorticity) thus diverges

as

〈ω2〉 ∼ ε/ν, (2.58)

for ν → 0. This indicates that enstrophy is produced in 3D turbulence, and

suggests that there may be a finite time singularity in the system, an issue

to which we shall return later. By finite time singularity of enstrophy, we

mean that the enstrophy diverges within a finite time (i.e. with a growth rate

which is faster than exponential). In a related vein, we note that finiteness

of ε as ν → 0 constitutes what is called an anomaly in quantum field theory.
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Fig. 2.14. The mechanism of enstrophy generation by vortex tube stretching. The

vortex tube stretching vigorously produces small scale vorticity.

An anomaly occurs when symmetry breaking (in this case, breaking of time

reversal symmetry by viscous dissipation) persists as the symmetry breaking

term in the field equation asymptotes to zero. The scaling 〈ω2〉 ∼ 1/ν is

suggestive of an anomaly. So is the familiar simple argument using the Euler

vorticity equation (for ν → 0 )

dω

dt
= ω ·∇v, (2.59a)

d

dt
ω2 ∼ ω3. (2.59b)
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Of course, this “simple argument” is grossly over-simplified, and incorrect.†

In two dimensions ω · ∇v = 0, so enstrophy is conserved. As first shown

by Kraichnan, this necessitates a dual cascade, in which enstrophy forward

cascades to small scales, while energy inverse cascades to large scales. The

mechanism by which the dual conservation of energy and enstrophy force a

dual cascade in 2D turbulence is discussed further later in this chapter.

2.3.1.4 Fundamental hypothesis for K41 theory

As elegantly and concisely discussed by U. Frisch in his superb monograph

“Turbulence - The Legacy of A.N. Kolmogorov”, the K41 theory can be

systematically developed from a few fundamental hypotheses or postulates.

Upon proceeding, the cynical reader will no doubt conclude that the hy-

potheses H1)-H4) stated below are simply restatements of assumptions i)-

iv). While it is difficult to refute such a statement, we remark here that

H1)-H4), are indeed of value, both for their precise presentation of Kol-

mogorov’s deep understanding and for the insights into his thinking which

they provide. As these postulates involve concepts of great relevance to

other applications, we revisit them here in preparation for our subsequent

discussions. The first fundamental hypotheses of the K41 theory is:

H1) As Reynolds number Re → ∞, all possible symmetries of the Navier-

Stokes equation, usually broken by the means of turbulence initiation or

production, are restored in a statistical sense at small scales, and away from

boundaries.

† In fact, a mathematical proof of finite time singularity of enstrophy remains an elusive goal,

with an as-yet-unclaimed Clay prize of $1,000,000. (2007)
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The reader should note that H1) is a deceptively simple, and fundamentally

quite profound hypothesis! The onset or production of turbulence nearly

always involves symmetry breaking. Some examples are:

i) shear flow turbulence: the initial Kelvin-Helmholtz instability results

from breaking of translation and rotation symmetry.

ii) turbulence in a pipe with a rough boundary: the driving pressure drop,

the wall and roughenings break symmetry.

iii) turbulence in a flushing toilet: the flow has finite chirality and is non-

stationary.

Naively, one might expect the turbulent state to have some memory of this

broken symmetry. Indeed, the essence of β-model and multi-fractal theories

of intermittency is the persistence of some memory of the large, stirring

scales into the smallest inertial range scales. Yet, the universal character of

K41 turbulence follows directly from, and implies a restoration of, initially

broken symmetry at small scales. Assumptions i) and ii) really follow from

hypothesis H1).

The second K41 hypothesis is:

H2) Under the assumptions of H1), the flow is self-similar at small scales

and has a unique scaling exponent h, such that

v(r,λ0) = λhv(r, 0).

Here, v(r, 0) refers to the velocity wavelet field at position r and scale 0.

Clearly, H2) implies assumptions iii) and iv), concerning self-similarity and
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locality of interaction.

Hypotheses H1) and H2) pertain to flow structure and scaling properties.

Two additional postulates pertain to dynamics. These are:

H3) Given the assumptions of H1) and H2), turbulent flow has a finite, non-

vanishing mean rate of dissipation per unit mass ε, as ν → 0,

and

H4) In the limit of high but finite Re, all small-scale statistical properties

are uniquely and universally determined by ε and 0.

Hypothesis H3) is tacitly equivalent to stating that an anomaly exists in

K41 turbulence. Note that ε is independent of ν. However, notice also that

ε, the “mean rate of dissipation per unit mass” is not related to physical,

calculable quantities, and is left as a more-than-slightly ambiguous concept.

Introduction of fluctuations (which relax the statement ‘uniquely’ in H4) in

the local dissipation rate (which in reality are usually associated with local-

ized dissipative structures such as strong vortex tubes) and of a statistical

distribution of dissipation, leads down the path to intermittency modelling,

a topic which is beyond the scope of this book. The reader is referred to

Frisch ’95, for an overview, and to seminal references such as Frisch, Sulem,

Nelkin ’78, She and Leveque ’94, Falkovich, Gawedski and Vergassola, 2001,

and others for an in depth discussion of intermittency modifications to the

K41 theory. Finally, hypothesis H4) relates all statistics to ε and 0, the only

two possible relevant parameters, given H1), H4).
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2.3.2 Two Dimensional Fluid Turbulence

In this subsection, we briefly summarize certain key features of the theory

of two-dimensional (2D) fluid turbulence. Our attention will focus upon

the dual cascades of energy and enstrophy in 2D turbulence, the dispersion

of particle pairs (i.e., the Richardson problem), and on the emergence of

long lived coherent structures in turbulent 2D flow. Two-dimensional fluid

dynamics has many features in common with those of magnetized plasmas,

and so is of great interest to us. The 2D fluid turbulence is a critically

important paradigm for plasma turbulence. The literature of 2D turbulence

theory and experiment is vast, so here we survey only the most basic and

fundamental elements of this interesting story.

2.3.2.1 Forward and inverse cascade

As we have already discussed, the defining feature of 2D fluid dynamics is

the absence of vortex tube stretching (i.e., ω ·∇v = 0). Thus, vorticity is

conserved locally, up to viscous dissipation, i.e.,

∂

∂t
ω + v ·∇ω − ν∇2ω = 0, (2.60a)

or, representing v using a stream function, v = ∇φ × ẑ (where ẑ is the

coordinate in the direction of uniformity) and:

∂

∂t
∇2φ +∇φ× ẑ ·∇∇2φ− ν∇4φ = 0. (2.60b)

The local, inviscid conservation of the vorticity underlies many of the simi-

larities between 2D fluid dynamics and Vlasov plasma dynamics. In partic-

ular, we note that the equation for an inviscid 2D fluid is just

dρ

dt
= 0
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(for ρ = ∇2φ) which is similar in structure of the Vlasov equation

df

dt
= 0.

Both state that phase space density is conserved along particle orbits. Hence,

from Eq.(2.60b), it follows that in two dimensions both energy

E =
∫∫

d2x
v2

2
=

∫∫
d2x

1
2
|∇φ|2

and enstrophy

Ω =
∫∫

d2x
ω2

2
=

∫∫
d2x

1
2
∣∣∇2φ

∣∣2

together are quadratic inviscid invariants. The existence of two conserved

quantities complicates the construction of the theory of turbulent cascade

for 2D turbulence. As we shall show, the resolution of this quandary is

a dual cascade: That is, for forcing at some intermediate scale with wave

number kf such that kmin < kf < kmax, there is

i) a self-similar, local enstrophy flux from kf toward viscous damping at

high k. This is called the forward enstrophy cascade.

ii) a self-similar, local energy flux from kf toward low k and large scale.

This is called the inverse energy cascade.

Obviously, the forward and inverse cascades must have distinct spectral

power law scalings. Also, we remark that energy and enstrophy are each

transferred in both directions, toward high and low k. What distinguishes

the two cascade ranges is that the directions for self-similar transfer differ.

The need for a dual cascade picture can easily be understood from the

following simple argument. Consider some initial spectral energy E (k, t = 0)

distributed over a range as shown by a dotted line in Fig.2.15. This initial
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Fig. 2.15. Energy spectral density E(k) shifts toward lower k (schematic illustra-

tion). As ∆k2increases, the centroid k decreases.

distribution has variance ∆k2 and centroid wave number k

∆k2 =
1
E

∫
dk

(
k − k

)2
E (k) , (2.61a)

and

k =
1
E

∫
dk kE (k) . (2.61b)

Now, it is eminently plausible that the turbulence will act to broaden ∆k2

as the spectrum evolves in time. Thus, we expect that, as time increases,

∆k2 will grow,
∂

∂t
∆k2 > 0. (2.62)

However, we know that the relation
∫

dk
(
k − k

)2
E (k) = Ω −

(
k
)2

E holds

and that Ω and E are (inviscidly) conserved, i.e.,

∆k2 =
Ω (t = 0)
E (t = 0)

−
(
k
)2

. (2.63a)
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Since Ω
(
t = 0

)
/E

(
t = 0

)
is constant, we see that the growth of ∆k2 (Eq.(2.62))

requires
∂

∂t
k < 0, (2.63b)

so that the centroid of the spectrum must shift toward lower wave numbers.

This is shown in Fig.2.15. This trend is quite suggestive of the inverse

energy cascade.

We now repeat this type of exercise for the case of enstrophy. Here, it is

convenient to work with scale, not wave number. Thus, for l = 1/k, we can

define the variance

∆l2 =
1
Ω

∫
dl

(
l − l

)2Ω (l) , (2.64a)

where Ω (l) is the enstrophy density and the total enstrophy is given by

Ω =
∫

dlΩ (l), and l is the enstrophy centroid scale

l =
1
Ω

∫
dl lΩ (l) . (2.64b)

Note that convergence of the moments of Ω (l) is assumed a priori, but not

proved. Then the change of the variance is given as

∂

∂t
∆l2 =

∂

∂t

{
1
Ω

∫
dl

(
l − l

)2Ω (l)
}

=
∂

∂t

{
1
Ω

∫
dl l2Ω (l)−

(
l
)2

}
.

(2.65a)

However, the integral
∫

dll2Ω (l) is just the total energy, which is conserved

along with the total enstrophy. Hence,

∂

∂t
∆l2 = − ∂

∂t

(
l
)2

. (2.65b)

For the range of scales to broaden in time (i.e., ∂∆l2/∂t > 0),

∂

∂t
l < 0 (2.66)

is required, so the centroid of the distribution of enstrophy density (by scale)

must move toward smaller scale. This is suggestive of a direct cascade of
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enstrophy to smaller scale. Thus, we see that the simultaneous conditions

of spectral broadening and inviscid conservation of energy and enstrophy

force the dual cascade model. In this dual cascade scenario, enstrophy is

self-similarly transferred to smaller scales while energy is self-similarly trans-

ferred to large scales.

2.3.2.2 Self-similar spectral distribution

Simple scaling arguments for the cascade spectra are then easily to con-

struct. To describe the cascade spectra, it is convenient to work with the

energy density spectrum E (k), so with a factor of k for density of states,

kE (k) has the dimension of
〈
v2

〉
. Hence k3E (k) corresponds to enstro-

phy density. Spectral self-similarity leads us to hypothesis that enstrophy

cascades locally, with a rate set by the eddy-turn-over time τet for each k,

i.e.,
1

τcascade
=

1
τet

=
v (l)

l
= k(kE (k))1/2. (2.67)

Then, a scale-independent enstrophy dissipation rate η = k3E (k) /τcascade

requires that
(
k3E (k)

)3/2 = η, (2.68a)

which immediately gives the energy spectrum for the (forward) enstrophy

cascade as

E(k) = η2/3k−3. (2.68b)

Note that the eddy-turn-over rate in the enstrophy cascade range is con-

stant in k from Eqs. (2.67) and (2.68b). The enstrophy spectrum is given

by Ω (k) = k2E (k), so that the equi-partition holds for kΩ (k) according to

Eq. (6.68b). The physics of the enstrophy cascade is successfully described

by the cartoon in Fig.2.16. This shows that stretching of iso-contours of
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vorticity by a turbulent flow necessarily generates smaller scale structure

in these contours, thus producing a net increase in mean square vorticity

gradient
〈(

∇∇2φ
)2

〉
. The increase is what underlies the forward enstrophy

cascade process. The cascade is ultimately terminated by viscous mixing.

The forward cascade of enstrophy in k space is closely related to the homog-

enization (i.e., mixing and dissipation) of vorticity in configuration space,

to be discussed later.

Fig. 2.16. Mean square vorticity increases as vorticity isocontours stretch in a tur-

bulent flow.

The self-similar inverse cascade of energy is described correspondingly, by

balancing the energy dissipation rate ε with the flow rate of energy to larger

scale set locally by the eddy-turn-over rate, i.e., kE (k) /τcascade = ε. This

gives the relation, with the help of Eq.(2.67)

k5/2E (k)3/2 = ε, (2.69a)

so

E (k) = ε2/3k−5/3. (2.69b)

Of course, the energy cascade spectrum is the same as the K41 spectrum,

though the cascade is toward large scale. For forcing at kf , clearly here we
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have

εk2
f = η.

The dual cascade is represented by the schematic drawing in Fig.2.17. Note

that the inverse cascade builds up a large-scale flow from intermediate forc-

ing. The process of large-scale build-up is nicely illustrated by Fig.2.18,

which shows the evolution of the spectrum during a simulation of 2D tur-

bulence forced at intermediate scale. Ultimately, this flow occupies the

largest scale of the system, thus generating a macroscopic shear flow on

that scale. The large-scale shears can then directly strain the smaller scales,

thus breaching self-similarity and producing strong intermittency in the tur-

bulent flow.

2.3.2.3 Dispersion of particle pairs

The dispersion of particle pairs (i.e. Richardson’s problem) in a turbulent

2D flow is strongly tied to the dynamics of the dual cascades. In all cases, the

dispersion of particles separated by distance l is determined by the eddies

of that size, Eq.(2.57a), so

d

dt
l = v (l) .

For the inverse cascade range, i.e., l > k−1
f , Eq.(2.69b) gives v (l) = ε1/3l1/3,

so

l (t)2 ∼ ε t3, (2.70)

as in K41. Particle pairs grow super diffusively. For the forward, enstrophy

cascade range, l < k−1
f , we note that the velocity v (l) = (kE (k))1/2 is given

by η1/3l, because E (k) = η2/3k−3 holds as Eq.(2.68b). We immediately
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Fig. 2.17. Schematic of energy spectrum for dual cascade.

have

d

dt
l = η1/3l. (2.71)

Thus, particle separation l (t) grows exponentially in time for separation

scales smaller than the forcing scale, but super diffusive growth for scales

larger than the forcing scale. The exponential divergence of particles in the

enstrophy cascade range resembles the exponential divergence of trajectories

in a stochastic system, such as for the case of overlapping resonances between

plasma particles and a spectrum of waves.
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Fig. 2.18. Build-up of a large-scale flow in dual cascade [V. Borue, PRL 71 (1994)

1475]. Energy spectra normalized as (a) E (k) k3η−2/3 and (b) E (k) k5/3ε−2/3 as

the function of log10 (k/kf ) for three different parameters in simulations. (B and

C have finer resolution than A. In C, forcing occurs at finer scale than in B. See

[Borue] for details of parameters.)

2.3.2.4 Long lived vortices

It is interesting to note that long-lived coherent vortices have been observed

to emerge from decaying turbulent flows, and even in certain forced turbu-

lent flows. This important phenomenon has long been observed, but was
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Fig. 2.19. Vorticity contours in the initial condition (a) and long-time evolution at

a normalized time of t = 16.5 (b), where the eddy-turn-over time increases from

0.5 to 2.0 in the decay process. [J. C. McWilliams, JFM 146 (1984) 21]

dramatically emphasized by the seminal work of J. McWilliams and its off-

shoots. These studies revealed a two-stage evolution for decaying turbulence,

namely:

i) a fast stage of rapid decay and cascading, as shown in Fig.2.19(a)

ii) a second, slower stage of evolution by binary vortex interaction. In this

stage, vortices advect and strain each other, merge and sometimes form

persisting pairs. Example of this evolution is shown in Fig.2.19(b).

One of the most interesting aspects of this work is that it confirms the

intuitively appealing Okubo-Weiss criterion, which constitutes a plausible

answer (for 2D fluids) to the often-asked question of “What makes a coherent

structure coherent?”

The Okubo-Weiss criterion emerges from an asymptotic expression for the

time evolution of the local vorticity gradient ∇ρ (where ρ = ∇2φ is the local
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vorticity), which predicts that

∂

∂t
∇ρ =

√
S2 − ρ2. (2.72)

Here, S = ∂2φ/∂x∂y is the local flow shear. The Okubo-Weiss (O-W) cri-

terion thus states that the evolution of the local vorticity gradient is set

by the Gaussian curvature of the stream function. In physical terms, the

O-W criterion states that when the magnitude of the local shear exceeds

the magnitude of local vorticity, the vorticity gradient is steeper and small

scales will develop, as they do in enstrophy cascade. If the local enstrophy

density exceeds |S|, however, the vorticity gradient will not steepen, and a

coherent vortex will simply rotate, without distortion. Locally, the flow will

be stable to the cascade process. The O-W criterion is quite plausible, as it

is consistent with the expected natural competition between shearing and

vortical circulation. Comparisons with simulations of decaying turbulence

indicate that the O-W criterion successfully predicts the location of long

lived, coherent vortices, which are, in some sense, stable to cascading, in

a turbulent flow. Indeed, when applied to a fully turbulent flow, the O-W

criterion successfully predicts the subsequent emergence and locations of co-

herent vortices after the early phase of rapid decay. Thus, the O-W criterion

constitutes one physically plausible approach to predicting intermittency in

2D turbulence.

Here, intermittency refers to breakdown of self-similar transfer by the for-

mation of stable structures. We should caution the reader that many types

of intermittency are plausible. (For instance, another origin of intermit-

tency, which is induced by the statistical variance of dissipation rate ε from

its mean 〈ε〉, is explained in [Yoshizawa, Arimitsu].) A full discussion of this

challenging, forefront problem requires a book itself.



2.3 K41 Beyond Dimensional Analysis 65

2.3.3 Turbulence in Pipe and Channel Flows

2.3.3.1 Illustration of problem

We now turn to the interesting and relevant problem of turbulence in pipe

and channel flows, which we hereafter refer to simply as ‘turbulent pipe

flow’. The essence of the pipe flow problem is the calculation of the mean

flow profile V (y) for flow of a fluid with viscosity ν through a long pipe with

fixed pressure drop per length ∆p/L, assuming no-slip boundary conditions.

The geometry and coordinates (after convention) are illustrated in Fig.2.20.

!

"

Fig. 2.20. Geometry of the pipe flow. The y-axis is measured from the wall (per-

pendicular to the wall) according to the convention.

As we shall see, there are many parallels between the K41 paradigm of

homogeneous turbulence in a periodic box and the problem of turbulent flow

in a pipe. The study of turbulent pipe flow was pioneered by Ludwig Prandtl

in seminal works published in 1932 and 1945, hereafter referred to as P32,

45. The parallel between the K41 and P32, 35 problems is summarized in

subsection 2.3.4.
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Like K41 turbulence, pipe flow turbulence manifests an element of univer-

sality in its phenomenology. In simple terms, pipe flow turbulence is driven

by turbulent mixing of the cross-stream shear of the mean flow dVx (y) /dy

by turbulent Reynolds stress
〈
ṼyṼx

〉
, so that turbulent energy production

P is given by:

P = −
〈
ṼyṼx

〉 d

dy
Vx (y) . (2.73)

We therefore see that the turbulence is driven by the cross-stream flux of

along stream momentum. Pipe flow is perhaps the simplest example of

flux-driven turbulence, a ubiquitous paradigm with many applications to

tokamaks, solar convection, etc.

The effective drag on the flow, which opposes the driving ∆p/L, results

from turbulent transport to the pipe wall, where the no-slip boundary condi-

tion forces the stream-wise flow to vanish. Thus, turbulent transport trans-

fers or connects momentum input or drive by pressure drop to dissipation

in the viscosity dominated region close to the no-slip boundary. A cartoon

of this spatial transport process and its implications for the flow profile is

given in Fig.2.21.

2.3.3.2 Viscous sublayer

The Reynolds stress
〈
ṼyṼx

〉
is an effective measure of momentum transport

to the wall, or equivalently, the stress exerted on the wall, which we call

Tw = ρ
〈
ṼyṼx

〉
.

Here ρ indicates the mass density and Tw is the stress (not temperature).

Clearly, Tw is proportional to ∆p/L. Since there is no sink of momentum
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Fig. 2.21. Schematic drawings of the turbulent eddies in the cross-section of the

pipe flow and the mean velocity profile across the mid plane.

other than viscous drag at the wall, the force balance on the fluid requires

Tw =
a

2L
∆p.

For the turbulent stress near the wall, Tw is constant across the flow, and

so we can define a constant friction velocity

V∗ =
√

Tw/ρ,

where the mass density ρ is taken constant here for the transparency of the

argument. V∗ is a characteristic turbulent velocity for a pipe flow. (Note

that the relation V∗ ∝
√

∆p/ρ holds.)

Having defined the characteristic velocity (which is called friction veloc-

ity) V∗, we can immediately identify two characteristic scales and Reynolds



68 Conceptual Foundations

numbers for pipe flow turbulence. One is the viscous sublayer width yd,

yd = νV −1
∗ , (2.74)

which is a measure of the thickness of the viscosity-dominated range near

the wall. In the viscous sublayer, y < yd, the Reynolds number Re = V∗y

satisfies the relation Re < 1. In order to balance the constant wall stress

and satisfy the no-slip boundary condition at the wall, the flow profile must

be linear, i.e., V (y) ∼ V∗y/yd, in the viscous sublayer. Of course, the flow

further away from the wall is strongly turbulent, and the Reynolds number

computed with the pipe cross-section length a, Re = V∗a/ν, is much larger

than unity. Indeed, in practical applications, Re is so large that all vestiges of

the (subcritical) instability process, which initially triggered the turbulence,

have been obliterated in the fully evolved turbulent state.

2.3.3.3 Log law of the wall

As with the K41 problem, empirical observation plays a key role in defining

the problem. In the pipe flow problem, numerous experimental studies over

a broad range of turbulent flows indicate that the flow profile has a universal,

self-similar structure consisting of three layers, namely:

a) the core; i.e., y ∼ a

b) an inertial sublayer; i.e., yd < y $ a

c) the viscous sublayer; i.e., 0 < y < yd,

and that in the inertial sublayer, the flow gradient is scale independent, with

a universal structure of the form

d

dy
V (y)∼V∗

y
, (2.75a)
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so

V (y) = κV∗ ln y. (2.75b)

This logarithmic profile for the inertial sublayer flow is often referred to as

the (Prandtl) Law of the Wall, and is, to reasonable accuracy, a universal

feature of high Re pipe flow. The flow profile and the three regimes are

sketched in Fig.2.22. The empirically determined constant, κ = 0.4, is

named the von Karman constant.

!!

"!

Fig. 2.22. Mean velocity of turbulent channel flows normalized by the friction ve-

locity, U+ = V (y) /V∗ as a function of the normalized distance y+ = y/yd. Quoted

from [Yoshizawa et al. Physics of fluids 17, 075113 (2005) ], which compiled the

lines, DNS [H. Abe, et al. Int. J. Heat Fluid Flow 25, 404 (2004)] and circles,

observation [T. Wei and W. W. Willmarth, J. Fluid Mech. 204, 57 (1989) ] at

Reτ = 1016. Here, Reτ is the Reynolds number defined by use of the friction

velocity V∗. Viscous flow near wall, log law and core profile are observed.

We should mention here that though the logarithmic law of the wall profile

is the best known feature of turbulent pipe flow, it is perhaps more instruc-

tive to focus on the universality of the flow profile gradient dV (y) /dy. Note
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that the local gradient is determined entirely by the distance from the wall

y (a purely local parameter!) and the friction velocity V∗. In same sense,

it is more appropriate to focus on the flow gradient instead of flow, since

the former is determined purely locally, while the flow at y is affected by

physical effects originating at points far away.

A simple, physically appealing model can be constructed to explain the

empirical law of the wall. The basic ideas of this model are:

i) turbulence intensity in the inertial sublayer is determined by a local

balance between mean profile relaxation induced by turbulent viscosity

νT and turbulent dissipation of fluctuation energy,

ii) turbulence is characterized locally by a simple velocity, namely the fric-

tion velocity V∗, and a single length scale l.

Now, turbulence energy E evolves according to a competition between

production P and dissipation ε, so

∂

∂t
E = P − ε, (2.76a)

where

P = νT
∂

∂y
V (y) = V∗l

∂

∂y
V (y) , (2.76b)

and

ε =
V 3
∗
l

. (2.76c)

Here l is the characteristic length scale of the turbulence. Now, empirically

we have ∂V (y) /∂y = V∗/y, it follows that

∂

∂t
E = V∗l

V 2
∗

y2
− V 3

∗
l

. (2.76d)

Thus, we see that the most direct way to ensure stationality in the iner-

tial sublayer is to simply take the characteristic length scale l to be y, the
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distance from the wall,

l ∼ y, so νT = V∗y.

Note this ansatz ensures scale invariance in the inertial sublayer. The length

l ∼ y is often referred to as the mixing length, since by analogy with gas

kinetics where viscosity is given by thermal velocity and mean free path,

ν = vT lmfp, l ∼ y may be thought of as an effective mean free path, over

which fluid momentum is mixed by a random walk with root-mean-square

velocity V∗. In other words, the log law of the wall is based on the picture

that the length of turbulent mixing l is given by the distance from the wall

y (the upper bound by the vortex size in the region between the location y

and the wall.).

This mixing length model of pipe flow turbulence was first proposed by

Prandtl, and thus goes by the name of Prandtl Mixing Length Theory. Note

that mixing length theory also immediately recovers the logarithmic profile,

since by making the assumption of diffusive transport,

Tw

ρ
=

〈
ṼyṼx

〉
= νT

∂

∂y
V (y) , (2.77a)

(note the minus sign is absorbed since y is measured from the wall) and if

νT = V∗l = V∗y, we have
∂

∂y
V (y) =

V∗
y

. (2.77b)

2.3.3.4 Approach of self-similarity

It is enlightening to briefly review another even simpler approach to the

problem of the inertial sublayer profile, assuming similarity methods. To

this end, one can formulate the problem by noting that since it is the

mean velocity gradient which is locally determined self-similar and seem-

ingly ‘universal’, we know that the dimensionless function yV −1
∗ ∂V (y) /∂y
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is determined exclusively by the dimensionless parameters in the problem.

Now, since there are two characteristic length scales in pipe flow turbulence,

namely the viscous sublayer scale yd = νV −1
∗ and pipe cross-section a, the

relevant dimensionless function can be written as

y

V∗

∂V (y)
∂y

= F

(
yd

y
,
y

a

)
. (2.78a)

For the inertial sublayer of a high Reynolds number pipe flow, y/yd #

1 and a/y # 1. Thus, assuming complete Reynolds number similarity

amounts to taking yd/y → 0 and y/a→ 0. In this limit,

y

V∗

∂V (y)
∂y

= F (0, 0) → const, (2.78b)

so once again we arrive at the logarithmic Law of the Wall profile,

V (y) = κV∗ ln y. (2.78c)

Thus, we see that the Prandtl’s law of the wall emerges from extremely sim-

ple arguments of complete Reynolds number similarity and scaling methods.

The reader should note that study of corrections to the law of the wall in-

duced by incomplete similarity is ongoing and remains an active topic of

research.

2.3.4 Parallels between K41 and Prandtl’s Theory

The parallel between the K41 and P32, 35 problems was referred many

times during the discussion. At this point, the reader may wish to visit

the summary in Table 2.4, to review the many parallels between the twin

studies in self-similarity which constitute Kolmogorov’s theory of the inertial

range spectrum and Prandtl’s theory of turbulent pipe flow. This table is

largely self-explanatory. It is interesting, however, to comment on one place
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where a parallel does not exist, namely, in the last entry, which deals with

‘rigorous results’. For K41 theory, the ‘4/5 Law’ is a rigorous asymptotic

theorem which links the dissipation rate ε, the length scale l, and the triple

moment
〈
δV 3 (l)

〉
by the relation

〈
δV 3 (l)

〉
= −4

5
εl.

The 4/5 Law, derived from the Karman-Howarth relation, is perhaps the

one true theorem, which is proved in turbulence theory. Since P32,45 theory

tacitly assumes
〈
δV 3 (l)

〉
∼V 3

∗ ∼εy,

it is naturally desirable to know a theorem for turbulent pipe flow, which

corresponds to the 4/5 law. Unfortunately, no such result is available at this

time.
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Table 2.4. Parallel studies in self-similarity

Inertial Range Spectrum (K41) Pipe Flow Profile (P32, 45)

Basic ideas

self-similarity in scale self-similarity in space

inertial range spectrum V (l) inertial sublayer profile V (y)

eddy/wavelet mixing ‘slug’ or eddy

K41 spectrum law of the wall

Range

stirring core

inertial inertial sub-layer

dissipation viscous sub-layer

Element

l → eddy scale lM = y → mixing length

Through-put

ε→ dissipation rate V 2
∗ = TW /ρ

→ wall stress, friction velocity

Rate

1/τ(l) ∼ V (l)/l (eddy turn-over) νT y−2 ∼ V∗/y (νT : eddy viscosity)

Balance

ε = V (l)2/τ(l) V 2
∗ ∼νT ∂V (y)/∂y

V (l) ∼ ε1/3l1/3 ∂V (y)/∂y ∼ V∗/y → long profile

Dissipation scale length

ld = ν3/4ε−1/4 yd = νV −1
∗

Fit Constant

Kolmogorov constant von Karman constant

Theorem

4/5 law ?




